Mar-Apr 2008 Conventional and Microwave Irradiation Assisted Synthesis of New 1,2,4-Triazepine-3-thiones

Ashraf A. Aly,^{*a} Alaa A Hassan,^a Essmat M. El-Sheref,^a Mamdouh A. Mohamed^a and Alan B. Brown^b

^a Chemistry Department, Faculty of Science, Minia University, 61519 Minia, A. R. Egypt ^b Chemistry Department, Florida Institute of Technology, 150 W University Blvd, Melbourne, Florida 32901,

U.S.A.

Received July 30, 2007

New 1,2,4-triazepine-3-thiones have been obtained during the respective reactions of *N*-substitutedhydrazino carbothioamides with dimethyl acetylenedicarboxylate and dibenzoyl acetylene under prolonged reflux in acetic acid and/or DMF. However, the reaction of the starting materials in DMF under microwave irradiation afforded the same products in higher yields within a few minutes.

J. Heterocyclic Chem., 45, 521 (2008).

INTRODUCTION

Thiosemicarbazides are easily cyclized by the action of acids, bases or oxidants; therefore they are useful versatile building blocks for the preparation of heterocyclic ring systems. The heterocyclization of 1,4-disubstituted thiosemicarbazides - in basic or acidic media and under various reaction conditions - were investigated [1-3]. Four-, five-, six- and seven-membered heterocyclic compounds were prepared by the reaction of thiosemicarbazide derivatives with α - and β -haloketones [4-6]. The N^2 of the thiosemicarbazide group is a softer nucleophilic center than the harder and more powerful terminal nitrogen N^1 . Thus, reagents susceptible to nucleophilic attack by N^1 may in a second step undergo cyclization to afford the aforesaid heterocycles in excellent yields, even under mild reaction conditions [4,5]. Microwave (MW) irradiation of thiosemicarbazides has been employed for rapid synthesis of a wide variety of heterocyclic compounds such as thiadiazoles, triazole-3thiols, thioxoimidazoles and thiadiazepines [6-8]. The course of microwave assisted or conventional thermal intramolecular heterocyclization of thiosemicarbazides has been previously investigated [9,10]. Synthetic organic reactions performed under non-traditional conditions are gaining popularity, primarily to circumvent growing environmental concerns [11-13]. Microwave technology has become a powerful tool in organic synthesis, since by employing this technique it is generally possible to prepare organic compounds very fast, with high purity and better yields compared to conventional methods [14,15]. Some time ago, we synthesized many heterocyclic ring systems such as thiazoles, thiazines, thiadiazoles, thiadiazines, pyrazines and indazoles from the reactions of thiosemicarbazides with π -deficient compounds [16,17]. Besides, Aly et al reported on the synthesis of various thiazin-4-ones from the reactions of aroylthioureas (ArCONHCSNHR) with dimethyl acetylenedicarboxylates [18]. In addition, thiosemicarbazides show unusual reactivity towards 2,3-diphenylcyclopropenone, giving a variety of pyridazinethiones and 1,2,4-triazolo[4,3-b]pyridazinethiones [19]. Recently, we have utilized microwave irradiation to assist the synthesis of triazologuinazolinones and benzimidazoguinazolinones [20]. It was also reported [21] on the synthesis of 7-alkyl-5-aryl-1,2,4-triazepine-3-thiones using hydrazinediium dithiocyanate and α,β -unsaturated ketones as starting materials. Viallefont and his co-workers reported on the methods used to prepare various derivatives of 1,2,4triazepines disubstituted by oxo, thioxo, methoxy or methylthio groups [22]. Interestingly, triazepines and their fused derivatives exhibit interesting biological properties [23]. Moreover, it was also demonstrated that those compounds might serve as black toning agents for laminated photographs or as starting materials for the synthesis of thiazolo[3,2-b][1,2,4]triazepines, which are supposed to have immunomodulating activities [24]. Yamamoto et al [25] patented triazepine derivatives as inhibitors of cytokine production. In this publication our goal is to synthesize new triazepine-3-thiones from the of thiosemicarbazides with reaction dimethyl acetylenedicarboxylate and dibenzoyl acetylene under conventional methods and/or microwave irradiation.

RESULTS AND DISCUSSION

The synthesis of 4-substituted 1-acetyl-7-oxy-3-thioxo-2,3,4,7-tetrahydro-1*H*-1,2,4-triazepine-5-carboxylic acid methyl esters 3a-c was accomplished by refluxing equimolar amounts of N-aryl-hydrazino carbothioamides **1a-c** with dimethyl acetylenedicarboxylate (2) in acetic acid (Method A, Scheme 1). Unfortunately, on applying the same procedure using microwave irradiation in a small amount of DMF, the triazepines 3a-c were not obtained. Instead, the reaction afforded, within a few minutes, the triazepine derivatives 4a-c in 70-87% yields (Method B, Scheme 1). The structure of compounds 3a-c and 4a-c is in accord with their ir, ¹H nmr, ¹³C nmr and mass spectral data in addition to elemental analyses. The ir and nmr spectra of compounds 3a-c and 4a-c showed that the structural difference between compounds 3a-c and 4a-c is related to the numbers of acetyl groups. The ir, nmr and mass spectra as well as the elemental analyses of **3a-c** and **4a-c** proved the presence of the substructures R¹-N-CS-HN-N(COCH₃) in **3a-c** and R¹-N-CS-HN-NH- in 4a-c (Scheme 1). For example, the mass spectrum and elemental analysis proved the structural formula of 3a as $C_{14}H_{13}N_3O_4S$. The ¹H nmr spectrum of **3a** (as an example) contained a broad singlet at δ 8.60, assignable to the hydrazine-proton. The ¹³C nmr spectrum of **3a** contained three carbonyl carbon signals at δ 169.0, 170.3 and 175.0 assigned to C-5, CO-ester and CO-acetyl, respectively. Another deshielded carbon signal assigned to the thione group resonated at δ 181.6, and the ir spectrum of **3a** showed bands characteristic of vibration coupling of C=S and C-N groups at v_{max} 1370-1350 and 988-1015 cm⁻¹ [26,27]. Due to the appearance of the thione group, we have excluded the formation of compounds 5a-c (Scheme 1). A singlet at δ 6.20 assigned to H-6 appeared in the ¹H nmr spectrum of **3a**, and CH-6 resonated in the ¹³C nmr spectrum at δ 110.2. By contrast, in the ¹H nmr spectrum of compound 4a (as an example), the presence of two hydrazine protons was indicated by two broad singlets at δ 7.30 and 7.60. Moreover the absence of the CO-acetyl carbon signal and the appearance of another hydrazine-NH proton (N^{1}) indicated that acetylation had not occurred at this nitrogen atom. Indeed, acetylation process had occurred with acetic acid under long refluxing time. In COSY C H studies of 3c or 4c, the allylic aliphatic CH₂ showed a correlation with the amide carbonyl, but not with the ester carbonyl. These data unambiguously exclude the formation of isomers 6a-c (Scheme 1). Because the magnitude of the Nuclear Overhauser Effect (NOE) depends upon the internuclear distance as $1/r^6$, in practice, NOE's are rarely seen between pairs of protons that are separated by more than about 4.5 Å. [28] NOE's have been correlated with distance as follows: strong (1.8-2.9 Å), medium (1.8-3.7 Å) and weak (3.0-4.5 Å) [29]. Irradiation of the ester protons of the products gave a strong NOE in the hydrazine proton (NH^{1}) , and a medium enhancement in the other one (NH^2) , which agrees with structures 4a-c, but is inconsistent with structures 6a-c. The products were therefore assigned as 1-acetyl-1,2,4triazepine-3-thiones 3a-c and 1,2,4-triazepine-3-thiones 4a-c, respectively (Scheme 1).

To establish the scope of the phenomena, we treated thiosemicarbazides 1d-g with 2 in refluxing DMF or methanol (Method A, Scheme 2). The reaction produced the corresponding 2-aryl-triazepine-4-substituted-2-thiones 7a-d in good yields (Scheme 2). However, the reaction of 1d-g with 2 under microwave irradiation in a small amount of DMF produced 7a-d (Method B, Scheme 2) in better yields and in a shorter time than the conventional method (Method A). In order to explore another mode of synthesis of triazepines, compounds 1a-c reacted with dibenzoyl acetylene (8) in acetic acid, but the reaction failed. The reaction of 1a-c with 8 in DMF afforded, after 24-48 hours of reflux, the triazepines 9a-c (Method A, Scheme 3). Compounds 9a-c, could also be obtained from the reaction of **1a-c** with **8** under microwave irradiation in a small amount of DMF (Method **B**, Scheme 3) for 10-20 minutes. The vibration coupling of C=S and C-N groups could be assigned in the ir spectra of the products 9a-c, whilst the ¹³C nmr spectra showed the thione carbon signals at their expected chemical shifts. The ¹H NMR spectrum of **9a** showed a singlet for H-6 at δ 6.10, and the corresponding CH-6 resonated in the ¹³C nmr spectrum at δ 109.0. Additionally, the hydrazine-proton of N^2 appeared in the ¹H nmr spectrum at δ 7.50. In **9b**, the ¹H nmr spectrum revealed three singlets at δ 5.30, 6.20 and 7.40 assigned to CH₂-Ph, H-6 and hydrazine-NH, respectively. COSY C H of 9a indicated a correlation between H-6 and both C-7 (δ 160.0) and C-5 (δ 156.0). In **9b**, COSY C H experiment showed correlation between C-5 (δ 156.4) and the CH₂-Ph protons. The ¹H nmr spectra of compounds **9a-c** revealed the *ortho*-benzoyl protons as the most deshielded aromatic protons. Irradiation of the *ortho*-benzoyl protons in **9c** ($\delta \sim 7.80$) had no effect on the allylic protons. These results indicated the presence of compounds **9a-c** and excluded their isomeric products **10a-c** (Scheme 3). The products obtained under irradiation (Method **B**) have the same spectral data as those obtained from the conventional refluxing method (Method **A**).

EXPERIMENTAL

General. Melting points are uncorrected. ¹H- and ¹³C-nmr spectra were recorded in chloroform-d and measured on a Bruker AM 400 (400.134 MHz and 100.60 MHz) instrument. The chemical shifts (δ 's) were measured versus the internal standard TMS. Elemental analyses were performed by the Microanalysis Center of the Institut für Anorganische Chemie, Technische Universität Braunschweig, Germany. Mass spectra were obtained on a Finnigan MAT 8430 spectrometer at 70 eV. The ir spectra were obtained on a Nicolet 320 FT-ir using KBr pellets.

Starting Materials. 4-Phenyl- and allylthiosemicarbazide (1a,c) [30,31], and 4-benzylthiosemicarbazide (1b) [32] were

Scheme 1. Synthesis of 4-substituted-1,2,4-triazepine-3-thiones 3a-c and 4a-c

1 d f g	C ₆ H ₅ C ₆ H ₅	-CH ₂ - -CH ₂ -	R ² C ₆ H ₅ - C ₆ H ₅ - 4-CH ₃ - 4-Cl-C ₆	R ¹ N R C ₆ H ₄ - H ₄ -	R ² NNH S Id-g	, + 2	ethod A	$ \begin{array}{c} $
					Method A MeOH or DMF reflux 15-36 h		Method 1 DMF, N 10-20 n	ſW
	7	\mathbb{R}^1		R ²	Time (h)	Yield of 7 (%)	Time (min)	Yield of 7 (%)
	a b c d	0 0	-СН ₂ - -СН ₂ -	C ₆ H ₅ - C ₆ H ₅ - 4-CH ₃ -C 4-Cl-C ₆ H	0 1	64 68 77 60	15 10 12 20	84 92 96 76

Scheme 2. Synthesis of 2,4-disubstituted-1,2,4-triazepine-3-thiones 7a-d

Scheme 3. Synthesis of 7-benzoyl-5-phenyl-2H-3-substituted-1,2,4-triazepine-3-thiones 9a-c

prepared according to literature procedures. 1,2-Dimethyl acetylenedicarboxylate (2) was bought from Fluka, whereas dibenzoyl acetylene (8) was prepared according to literature [33].

Method A

Synthesis of 3a-c. A mixture of 1a-c (1 mmol) and 2 (1 mmol, 142 mg) in glacial acetic acid (50 ml) was heated under reflux for 10-18 h (the reaction was followed by TLC analysis). The solvent was evaporated under vacuum to half of its volume and the product obtained was recrystallized from the stated solvents.

1-Acetyl-5-oxo-4-phenyl-3-thioxo-2,3,4,5-tetrahydro-1H-1,2,4-triazepine-7-carboxylic acid methyl ester (3a). Yellow crystals of **3a** (0.18 g, 56%), m.p. 175° C (ethanol); ¹H nmr (chloroform-d): & 2.30 (s, 3 H, CH₃CO), 3.82 (s, 3 H, CH₃ester), 6.20 (s, 1 H, H-6), 6.60-6.78 (m, 3 H, Ph-H), 7.20-7.74 (m, 2 H, Ph-H), 8.60 (br, s, 1 H, NH²) ppm; ¹³C nmr (chloroform-d): 8 22.0 (CH₃CO), 51.0 (CH₃-ester), 110.2 (CH-6), 127.6 (p-Ph-CH), 128.2 (2 m-Ph-CH), 128.8 (2 o-Ph-CH), 133.5 (Ph-C), 150.0 (C-7), 169.0 (C-5), 170.3 (CO-ester), 175.0 (CO-acetyl), 181.6 (C-3) ppm; ir (potassium bromide): 3410 (NH), 3030-3000 (Ar-CH), 1735-1695 (C=O), 1592 (C=C), 1370, 988 (C=S, C-N), 1265-1256 (st. C=S) cm⁻¹; ms (electron impact, 70 eV): m/z (%) 319 [M⁺] (62), 277 (100), 262 (14), 245 (12), 220 (16), 160 (14), 142 (32), 77 (72), 59 (20), 51 (36), 44 (44); Anal. Calcd. for C₁₄H₁₃N₃O₄S: C, 52.66; H, 4.10; N, 13.16. Found: C, 52.80; H, 4.15; N, 13.05.

1-Acetyl-4-benzyl-5-oxo-3-thioxo-2,3,4,5-tetrahydro-1*H***-1,2,4-triazepine-7-carboxylic acid methyl ester (3b).** Yellow crystals of **3b** (0.20 g, 60%), m.p. 142° C (ethanol); ¹H nmr (chloroform-d): δ 2.26 (s, 3 H, CH₃CO), 3.90 (s, 3 H, CH₃-ester), 5.20 (s, 2 H, CH₂-Ph), 6.28 (s, 1 H, H-6), 6.56-6.62 (m, 2 H, Ph-H), 7.16-7.30 (m, 3 H, Ph-H), 8.62 (br, s, 1 H, *N*H²) ppm; ¹³C nmr (chloroform-d): δ 22.4 (*C*H₃CO), 51.4 (*C*H₃-ester), 58.0 (*C*H₂-Ph), 111.0 (*C*H-6), 126.2 (*p*-Ph-CH), 127.0 (2 *m*-Ph-CH), 128.2 (2 *o*-Ph-CH), 134.6 (Ph-C), 150.8 (*C*-7), 169.6 (*C*-5), 170.8 (*C*O-ester), 175.4 (*C*O-acetyl), 182.0 (*C*-3) ppm; ir (potassium bromide): 3415 (NH), 3040-3008 (Ar-CH), 2990-2890 (Aliph-CH), 1732-1690 (C=O), 1594 (C=C), 1360, 1000 (C=S, C-N), 1265-1256 (st. C=S) cm⁻¹; ms (electron impact, 70 eV): m/z (%) 333 [M⁺] (68), 290 (100), 200 (64), 160 (24), 142

(30), 91 (46), 77 (70), 59 (18), 51 (32), 44 (40). *Anal.* Calcd. for $C_{15}H_{15}N_3O_4S$: C, 54.04; H, 4.54; N, 12.60 Found: C, 54.20; H, 4.48; N, 12.50.

1-Acetyl-4-allyl-5-oxo-3-thioxo-2,3,4,5-tetrahydro-1H-1,2,4triazepine-7-carboxylic acid methyl ester (3c). Pale yellow crystals of 3c (0.15 g, 54%), m.p. 155° C (ethyl acetate); ¹H nmr (chloroform-d): & 2.30 (s, 3 H, CH₃CO), 3.92 (s, 3 H, CH₃ester), 4.50-4.56 (m, 2 H, allyl-CH₂), 5.18-5.26 (m, 2 H, allyl-CH₂=), 5.76-5.80 (m, 1 H, allyl-CH=), 6.14 (s, 1 H, H-6), 8.70 (br, s, 1 H, NH²) ppm; ¹³C nmr (chloroform-d): δ 22.4 (CH₃CO), 45.0 (allyl-CH₂-N), 52.0 (CH₃-ester), 112.0 (CH-6), 116.0 (allyl-CH₂=), 131.0 (ally-CH=), 151.0 (C-7), 170.0 (C-5), 172.0 (COester), 176.8 (CO-acetyl), 182.4 (C-3); ir (potassium bromide): 3420 (NH), 2992-2894 (Aliph-CH), 1732-1694 (CO), 1596 (C=C), 1365, 1015 (C=S, C-N), 1260 (st C=S) cm⁻¹; ms (electron impact, 70 eV): m/z (%) 283 [M⁺] (48), 243 (100), 200 (58), 130 (34), 91 (46), 59 (18), 51 (32), 32 (36). Anal. Calcd. for C₁₁H₁₃N₃O₄S: C, 46.64; H, 4.63; N, 14.83. Found: C, 46.50; H, 4.60; N, 14.80.

Method B

Synthesis of 4a-c by MW. Equimolar amounts of 1a-c (1 mmol) and 2 (1 mmol, 142 mg) were well-mixed in DMF (5-8 ml). The mixture was irradiated in a microwave oven for 5-10 min (100 °C). On cooling to room temperature, the precipitated products 4a-c were collected by filtration and recrystallized from the stated solvents.

5-Oxo-4-phenyl-3-thioxo-2,3,4,5-tetrahydro-1*H***-1,2,4-triazepine-7-carboxylic acid methyl ester (4a). Pale yellow crystals of 4a (0.23 g, 75%), m.p. 240° C (acetonitrile); ¹H nmr (chloroform-d): \delta 3.90 (s, 3 H, CH₃-ester), 6.34 (s, 1 H, H-6), 6.56-6.70 (m, 3 H, Ph-H), 7.20-7.24 (m, 2 H, Ph-H), 7.30 (br, s, 1 H, NH¹), 7.60 (br, s, 1 H, NH²) ppm; ¹³C nmr (chloroform-d): \delta 51.8 (CH₃-ester), 100.2 (CH-6), 127.4 (***p***-Ph-CH), 128.2 (2** *m***-Ph-CH), 128.6 (2** *o***-Ph-CH), 134.0 (Ph-C), 152.0 (C-7), 166.0 (C-5), 168.0 (CO-ester), 183.0 (C-3) ppm; ir (potassium bromide): 3420-3180 (NH), 3045-3010 (Ar-CH), 1720-1700 (CO), 1596 (C=C), 1350, 988 (C=S, C-N), 1220 (C=S) cm⁻¹; ms (electron impact, 70 eV): 277 [M⁺] (100), 262 (20), 246 (24), 218 (40), 194 (64), 165 (32), 88 (22), 77 (40), 74 (26), 51 (36), 44 (40).** *Anal***. Calcd. for C₁₂H₁₁N₃O₃S: C, 51.98; H, 4.00; N, 15.15. Found: C, 52.20; H, 4.00; N, 15.05.**

4-Benzyl-5-oxo-3-thioxo-2,3,4,5-tetrahydro-1H-1,2,4-triazepine-7-carboxylic acid methyl ester (4b). Pale yellow crystals of **4b** (0.25 g, 87%), m.p. 190° C (methanol); ¹H nmr (chloroform-d): δ 3.94 (s, 3 H, CH₃-ester), 5.40 (s, 2 H, CH₂-Ph), 6.30 (s, 1 H, H-6), 6.70-6.76 (m, 2 H, Ph-H), 7.18-7.30 (m, 3 H, Ph-H), 7.34 (br, s, 1 H, NH¹), 7.66 (br, s, 1 H, NH²) ppm; ¹³C nmr (chloroform-d): δ 48.60 (CH₂-Ph), 50.9 (CH₃-ester), 100.4 (CH-6), 127.0 (p-Ph-CH), 127.6 (2 m-Ph-CH), 128.4 (2 o-Ph-CH), 133.8 (Ph-C), 153.2 (C-7), 165.0 (C-5), 168.8 (COester), 182.2 (C-3) ppm; ir (potassium bromide): 3400-3190 (NH), 3030-3000 (Ar-CH), 2980-2967 (Aliph-CH), 1718-1700 (CO), 1592 (C=C), 1360, 990 (C=S, C-N), 1230 (C=S) cm⁻¹; ms (electron impact, 70 eV): m/z (%) 291 [M⁺] (100), 276 (18), 260 (26), 232 (20), 200 (50), 116 (34), 88 (26), 91 (38), 77 (30), 60 (30), 44 (30). Anal. Calcd. for C₁₃H₁₃N₃O₃S: C, 53.60; H, 4.50; N, 14.42. Found: C, 53.40; H, 4.40; N, 14.50.

4-Allyl-5-oxo-3-thioxo-2,3,4,5-tetrahydro-1*H***-1,2,4-triazepine-7-carboxylic acid methyl ester (4c). Pale yellow crystals of 4c (0.17 g, 70%), m.p. 212° C (ethanol); ¹H nmr (chloroformd): \delta 3.96 (s, 3 H, CH₃-ester), 4.28-4.34 (m, 2 H, allyl-CH₂), 5.20-5.30 (m, 2 H, allyl-CH₂=), 5.70-5.76 (m, 1 H, allyl-CH=), 6.28 (s, 1 H, H-6), 7.30 (br, s, 1 H,** *N***H¹), 7.60 (br, s, 1 H,** *N***H²); ¹³C nmr (chloroform-d₃): \delta 45.8 (allyl-CH₂-N), 50.8 (CH₃-ester), 112.6 (CH-6), 116.0 (allyl-CH₂=), 131.4 (allyl-CH=), 153.0 (C-7), 165.6 (C-5), 169.2 (CO-ester), 182.0 (C-3) ppm; ir (potassium bromide): 3400-3180 (NH), 2986-2960 (Aliph-CH), 1722-1700 (CO), 1596 (C=C), 1370, 988 (C=S, C-N), 1220 (C=S) cm⁻¹; ms (electron impact, 70 eV): m/z (%) 241 [M⁺] (100), 200 (50), 185 (22), 169 (24), 141 (18), 116 (34), 88 (36), 74 (30), 44 (38). Anal. Calcd. For C₉H₁₁N₃O₃S: C, 44.80; H, 4.60; N, 17.42. Found: C, 44.90; H, 4.50; N, 17.52.**

Method A

Synthesis of 7a-d. A mixture of **1d-g** (1 mmol) and **2** (1 mmol, 142 mg) in absolute methanol (100 ml) or DMF (30 ml) was heated under reflux for 15-36 h (the reaction was followed by TLC analysis). The solvent was evaporated under vacuum to half its volume to give compounds **7a-d**. These compounds were recrystallized from the stated solvents.

2,4-Diphenyl-5-oxo-3-thioxo-2,3,4,5-tetrahydro-1H-1,2,4-triazepine-7-carboxylic acid methyl ester (7a). Pale red crystals **7a** (0.23 g, 64%), m.p. 282° C (ethanol); ¹H nmr (chloroform-d): δ 3.95 (s, 3 H, CH₃-ester), 6.50 (s, 1 H, H-6), 6.60-6.90 (m, 5 H, Ph-H), 7.20-7.30 (m, 3 H, Ph-H), 7.50 (br, s, 1 H, NH¹), 7.70-7.78 (m, 2 H, Ph-H) ppm; ¹³C nmr: (chloroform-d): δ 52.2 (*C*H₃-ester), 105.0 (*C*H-6), 127.0, 127.6 (*p*-Ph-*C*H), 128.0, 128.6 (2 *m*-Ph-*C*H), 129.4, 130.0 (2 *o*-Ph-*C*H), 132.8, 134.2 (Ph-*C*), 154.0 (*C*-5), 168.0 (*C*-7), 168.8 (*CO*-ester), 182.4 (*C*-3) ppm; ir (potassium bromide): 3422 (NH), 3060-3020 (Ar-CH), 1725-1708 (CO), 1592 (C=C), 1360, 988 (C=S, C-N), 1260-1255 (st. C=S) cm⁻¹; ms (electron impact, 70 eV): m/z (%) 353 [M⁺] (40), 276 (30), 208 (40), 200 (50), 194 (64), 135 (42), 91 (100), 77 (40), 51 (34). *Anal.* Calcd. for C₁₈H₁₅N₃O₃S: C, 61.18; H, 4.28; N, 11.89. Found: C, 61.30; H, 4.20; N, 12.05.

4-Benzyl-5-oxo-2-phenyl-3-thioxo-2,3,4,5-tetrahydro-1*H***-1, 2,4-triazepine-7-carboxylic acid methyl ester (7b).** Red crystals of **7b** (0.25 g, 68%), m.p. 258° C (methanol); ¹H nmr (chloroformd): δ 3.96 (s, 3 H, CH₃-ester), 5.30 (s, 2 H, CH₂-Ph), 6.50 (s, 1 H, H-6), 6.60-6.80 (m, 5 H, Ph-H), 7.20-7.50 (m, 5 H, Ph-H), 7.70 (br, s, 1 H, *N*H¹) ppm; ¹³C nmr (chloroform-d): δ 48.8 (*C*H₂-Ph), 52.0 (*C*H₃-ester), 106.4 (*C*H-6), 126.8, 127.4 (*p*-Ph-*C*H), 128.2, 128.8 (2 *m*-Ph-CH), 129.2, 129.6 (2 *o*-Ph-CH), 130.5, 130.8 (Ph-C), 153.0 (C-5), 165.4 (C-7), 170.0 (CO-ester), 182.0 (C-3) ppm; ir (potassium bromide): 3400 (NH), 3060-3008 (Ar-CH), 2990-2960 (Aliph-CH), 1722-1700 (CO), 1592 (C=C), 1350, 988 (C=S, C-N), 1262-1257 (st. C=S) cm⁻¹; ms (electron impact, 70 eV): m/z (%) 367 [M⁺] (100), 352 (18), 336 (16), 290 (22), 276 (24), 207 (46), 232 (20), 167 (30), 116 (34), 88 (26), 105 (80), 91 (60), 77 (48). *Anal.* Calcd. for $C_{19}H_{17}N_3O_3S$: C, 62.11; H, 4.66; N, 11.44. Found: C, 62.30; H, 4.60; N, 11.40.

4-Benzyl-5-oxo-2-(4'-methylphenyl)-3-thioxo-2,3,4,5-tetrahydro-1H-1,2,4-triazepine-7-carboxylic acid methyl ester (7c). Pale yellow crystals of 7c (0.29 g, 77%), m.p. 225° C (methanol); ¹H nmr (chloroform-d): δ 2.38 (s, 3 H, CH₃-tolyl), 3.98 (s, 3 H, CH₃-ester), 5.20 (s, 2 H, CH₂-Ph), 6.60 (s, 1 H, H-6), 6.70-6.90 (m, 5 H, Ph-H), 7.30-7.56 (m, 4 H, Ph-H), 7.76 (br, s, 1 H, NH¹) ppm; ¹³C nmr (chloroform-d): δ 32.8 (CH₃Ph), 50.2 (CH2-Ph), 52.4 (CH3-ester), 107.0 (CH-6), 127.8 (p-Ph-CH), 128.4, 128.8 (2 m-Ph-CH), 129.2, 132.6 (2 o-Ph-CH), 130.8, 133.2 (Ph-C), 134.8 (CH₃-Ph-C), 153.8 (C-7), 166.8 (C-5), 172.0 (CO-ester), 181.0 (C-3) ppm; ir (potassium bromide): 3420 (NH), 3060-3008 (Ar-CH), 2980-2960 (Aliph-CH), 1725-1700 (CO), 1598 (C=C), 1340, 1000 (C=S, C-N), 1260 (st. C=S) cm⁻¹; ms (electron impact, 70 eV): m/z (%) 381 [M⁺] (100), 366 (18), 288 (64), 198 (30), 169 (30), 92 (84), 77 (60). Anal. Calcd. for C₂₀H₁₉N₃O₃S: C, 62.98; H, 5.20; N, 11.02. Found: C, 63.10; H, 5.10; N, 11.12.

2-(4'-Chlorophenyl)-5-oxo-4-phenyl-3-thioxo-2,3,4,5-tetrahydro-1H-1,2,4-triazepine-7-carboxylic acid methyl ester (7d). Pale red crystals of 7d (0.23 g, 60%), m.p. 170° C (ethanol); ¹H nmr (chloroform-d): δ 3.92 (s, 3 H, CH₃-ester), 6.30 (s, 1 H, H-6), 6.50-6.66 (m, 4 H, Ph-H), 7.20-7.36 (m, 5 H, Ph-H), 7.70 (br, s, 1 H, NH¹) ppm; ¹³C nmr (chloroform-d): 52.4 (CH3-ester), 107.0 (CH-6), 127.8 (p-Ph-CH), 128.4, 128.8 (2 m-Ph-CH), 129.2, 132.6 (2 o-Ph-CH), 130.8, 133.2 (Ph-C), 134.8 (CH₃-Ph-C), 153.8 (C-5), 166.8 (C-7), 172.0 (CO-ester), 181.0 (C-3) ppm; ir (potassium bromide): 3430 (NH), 3050-3012 (Ar-CH), 1725-1700 (CO), 1596 (C=C), 1350, 1000 (C=S, C-N), 1250 (st. C=S) cm⁻¹; ms (electron impact, 70 eV): m/z (%) 389 [M+2] (34), 387 [M⁺] (100), 386 (32), 372 (18), 356 (42), 352 (46), 366 (18), 277 (34), 275 (36), 190 (30), 112 (24), 98 (20), 77 (50). Anal. Calcd. for C₁₈H₁₄ClN₃O₃S: C, 55.74; H, 3.64; Cl, 9.14; N, 10.83. Found: C, 55.60; H, 3.60; Cl, 9.00; N, 10.70.

Method B

Synthesis of 7a-d by MW. As stated above, the mixture of 1a-g and 2 was well-mixed in DMF (10 ml). The mixture was irradiated in a microwave oven for 10-20 min (100 °C). On cooling to room temperature, the precipitated products 7a-d were collected by filtration and recrystallized from the stated solvents.

Method A

Synthesis of triazepines 9a-c. A mixture of 1a-c (1 mmol) and 8 (1 mmol, 234 mg) in DMF (20 ml) was gently heated at 80 °C for 24-48 h (the reaction was followed by TLC analysis). The solvent was evaporated under vacuum to half of its volume and the obtained products 9a-c were recrystallized from the stated solvents.

4,7-Diphenyl-3-thioxo-3,4-dihydro-2H-(1,2,4-triazepin-5-yl)-phenyl methanone (9a). Yellow crystals of **9a** (0.31 g, 82%), m.p. 210-2° C (ethanol); ¹H nmr (chloroform-d): δ 6.10 (s, 1 H, H-6), 6.62-6.80 (m, 5 H, Ph-H), 7.10-7.30 (m, 8 H, Ph-H),

Vol 45

7.50 (br, s, 1 H, NH^2), 7.60-7.64 (m, 2 H, Ph-H) ppm; ¹³C nmr (chloroform-d₃): δ 109.0 (CH-6), 126.0, 127.7, 128.2 (*p*-Ph-CH), 128.6, 129.0, 129.4, 130.2, 130.6, 131.0 (2 Ph-CH), 132.0, 132.6, 134.0 (Ph-C), 156.0 (C-5), 160.0 (C-7), 175.0 (COPh), 182.2 (C-3) ppm; ir (potassium bromide): 3400 (NH), 3070-3020 (Ar-CH), 1695 (CO), 1590 (C=C), 1350, 988 (C=S, C-N), 1270-1254 (st. C=S) cm⁻¹; ms (electron impact, 70 eV): m/z (%) 383 [M⁺] (54), 322 (10), 280 (24), 223 (10), 191 (24), 147 (10), 105 (100), 77 (76). Anal. Calcd. for C₂₃H₁₇N₃OS: C, 72.04; H, 4.47; N, 10.96. Found: C, 72.20; H, 4.55; N, 11.06.

4-Benzyl-7-phenyl-3-thioxo-3,4-dihydro-2*H***-(1,2,4-triazepin-5-yl)-phenyl methanone (9b).** Yellow crystals of **9b** (0.29 g, 72%), m.p. 200-2° C (methanol); ¹H nmr (chloroform-d): δ 5.30 (s, 2 H, CH₂-Ph), 6.20 (s, 1 H, H-6), 6.70-6.84 (m, 5 H, Ph-H), 7.00-7.30 (m, 8 H, Ph-H), 7.40 (br, s, 1 H, *N*H²), 7.70-7.74 (m, 2 H, Ph-H) ppm; ¹³C nmr (chloroform-d): δ 48.6 (*C*H₂Ph), 110.8 (CH-6), 126.4, 127.2, 128.0 (*p*-Ph-*C*H), 128.8, 130.0 130.4, 130.6, 130.8, 131.4 (2 Ph-*C*H), 132.4, 133.0, 133.8 (Ph-*C*), 156.4 (*C*-5), 158.8 (*C*-7), 176.0 (*C*OPh), 182.0 (*C*-3) ppm; ir (potassium bromide): 3380 (NH), 3080-3026 (Ar-CH), 2980-2890 (Aliph-CH), 1700 (CO), 1594 (C=C), 1350, 988 (C=S), 1256 (st. C=S) cm⁻¹; ms (electron impact, 70 eV): m/z (%) 397 [M⁺] (60), 320 (20), 306 (30), 292 (48), 280 (20), 223 (10), 191 (24), 147 (10), 84 (34), 91 (100), 77 (36). *Anal*. Calcd. for C₂₄H₁₉N₃OS: C, 72.52; H, 4.82; N, 10.57. Found: C, 72.70; H, 4.78; N, 10.68.

4-Allyl-7-phenyl-3-thioxo-3,4-dihydro-2H-(1,2,4-triazepin-5-yl)-phenyl methanone (9c). Yellow crystals of 9c (0.26 g, 76%), m.p. 125 °C (ethanol); ¹H nmr (chloroform-d): δ 4.40 (m, 2 H, allyl-CH₂), 5.20-5.34 (m, 2 H, allyl-CH₂=), 5.80-5.85 (m, 1 H, allyl-CH=), 6.04 (s, 1 H, H-6), 7.06-7.26 (m, 8 H, Ph-H), 7.38 (br, s, 1 H, NH²), 7.80-7.84 (m, 2 H, Ph-H) ppm; ¹³C nmr (chloroform-d): δ 46.0 (allyl-CH₂-N), 116.2 (allyl-CH₂=), 112.0 (CH-6), 127.0, 127.8 (p-Ph-CH), 138.4, 128.6, 130.0, 130.4 (2 Ph-CH), 131.8 (ally-CH=), 132.4, 133.0 (Ph-C), 156.2 (C-5), 158.4 (C-7), 176.2 (COPh), 182.4 (C-3) ppm; ir (potassium bromide): 3360 (NH), 3090-3010 (Ar-CH), 2986-2880 (Aliph-CH), 1706 (C=O), 1590 (C=C), 1360, 988 (C=S), 1254 (st. C=S) cm⁻¹; ms (electron impact, 70 eV): m/z (%) 347 [M⁺] (40), 306 (30), 242 (34), 223 (10), 202 (26), 191 (24), 126 (40), 105 (100), 77 (34). Anal. Calcd. for C₂₀H₁₇N₃OS: Found: C, 69.14; H, 4.93; N, 12.09. Found: C, 69.30; H, 4.90; N, 11.98.

Method B

As described above, **1a-c** (1 mmol) and **8** (1 mmol, 234 mg) were well mixed in DMF (5 ml). The mixture was irradiated in a microwave oven for 10-20 min (100 °C). On cooling to room temperature, the precipitated products **9a-c** were collected by filtration and recrystallized from the stated solvents. The spectral data were in good agreements with those given before.

Acknowledgement: Prof Dr. Ashraf A. Aly thanks DAAD committee for its financial support for the scholarship at Braunschweig University, Institute of Organic Chemistry, and Germany.

REFERENCES

[1] Raphael, E.; Joshua, C. P.; Koshy, L. Indian J. Chem. 1989, 28B, 635.

[2] Koren, B.; Stanovnik, B.; Tišler, M. Monatsh Chem. 1988, 119, 333.

- [3] Koren, B.; Stanovnik, B.; Tišler, M. *Heterocycles* **1985**, *23*, 913.
- [4] Dobosz, M.; Pitucha, M.; Wujec, M. Acta Pol. Pharm **1996**, 53, 31.

[5] Paul, S.; Gupta, V.; Gupta, R. Synth. Commun. 2003, 33, 1917.

[6] Tomita, Y.; Kabashima, S.; Okawara, Y.; Yamasaki, T.; Furukawa, M. J. Heterocycl. Chem. **1990**, *27*, 707.

[7] Suni, M. M.; Nair, V. A.; Joshua, C. P. *Tetrahedron Lett.* 2001, 42, 97.

[8] Okawara, T.; Kato, R.; Yasuda, N.; Yamasaki, T. J. Chem. Res. (S) 1987, 254.

[9] Hassan, A. A.; Mourad, A. E.; El-Shaieb, K. M.; Abou-Zeid, A. H; Döpp, D. *Heteroatom Chem.* **2003**, *14*, 535.

[10] Hassan, A. A.; Döpp, D. J. Heterocycl. Chem. 2006, 43, 592.

[11] a) Pillai, U. R.; Sahle-Demessie, E.; Varma, R. S. Mater. Chem. 2002, 12, 3199; b) Oussaid, A.; Thach, L. N.; Loupy, A.

Tetrahedron Lett. 1997, 38, 451. [12] Tierney, J. P.; Lidstr.öm, P., Eds. Microwave Assisted

Organic Synthesis, Blackwell, Oxford, 2005. [13] Loupy, A., Ed. Microwaves in Organic Synthesis; Wiley-

[13] Loupy, A., Ed. *Microwaves in Organic Synthesis;* wiley-VCH, Weinheim, 2002.

[14] Hayes, B. L. Microwave Synthesis: Chemistry at the Speed of Light, CEM Publishing, Matthews, NC, 2002.

[15] Kappe, C. O.; Stadler, A. *Microwaves in Organic and Medicinal Chemistry*, Wiley-VCH, Weinheim, 2005.

[16] Hassan, A. A.; Mourad, A. E.; El-Shaieb, K. M.; Abou-Zeid, A. H. J. Heterocycl. Chem. **2006**, *43*, 471.

[17] Hassan, A. A.; Mohamed, N. K.; Shawky, A. M.; Döpp, D. *Arkivoc* **2003**, 118.

[18] Aly, A. A.; Ahmed, E.-K., El-Mokdem K. M. J. Heterocycl. Chem. 2007, 44, 1431.

[19] Aly, A. A.; Hassan, A. A.; Gomaa M. A.-M.; El-Sheref, E. Arkivoc 2007, xiv, 1.

[20] Mourad, A. E.; Aly, A. A.; Farag, H. F.; Beshr E. A. Beilstein J. Org. Chem. 2007, 3, 1.

[21] Seebacher, W.; Michl, G.; Weis, R. Tetrahedron Lett. 2002, 43, 7481.

[22] Hasnaoui, A.; Lavergne, J.-P.; Viallefont, P. J. Heterocycl. Chem. 1978, 15, 71.

[23] Esseffar, M.; Jalal, R.; El Messaoudi, M.; El Mouhtadi, M. J Mol. Struct. (THEOCHEM). **1998**, 433, 301.

[24] a) Groszkowski, S.; Wrona, J. Pol. J. Pharmacol. Pharm. 1978, 30, 713; b) Lenman, M.; Lewis, A.; Gani, D. J. Chem. Soc., Perkin Trans I 1997, 2297; c) Lenman, M.; Ingham, S.; Gani, D. J. Chem. Soc., Chem. Commun. 1996, 85.

[25] Yamamoto, Y.; Shindo, M.; Nakamura, T. PCT Int. Appl. WO 9747622, **1998**; *Chem. Abstr.* **1998**, *128*, 75427e.

[26] Nakanishi, K.; Solomon, P. H. Infrared Absorption Spectroscopy, 2nd ed., Holden-Day, San Francisco, 1977; pp 50.

[27] Socrates, G. Infrared Characteristic Group Frequencies. Wiley & Sons: Chichester, 1980, pp. 116.

[28] Pasternack, L. B.; Lin, S. B.; Chin, T.-M.; Lin, W. C.; Huang, D. H.; Kan, L.-S. *Biophys. J.* **2002**, *82*, 3170.

[29] Kanaori, K.; Shibayama, N.; Gohda, K.; Tajima, K.; Makino, K. Nucleic Acids Res. 2001, 29, 831.

[30] Stanovnik, B.; Tišler, M. J. Org. Chem. 1960, 25, 2234.

[31] Eberhardt, U.; Rabe, J.; Anger, I.; Schmidt, J.; Grunert, H. East German Patent **1971**, *83*, 559; *Chem. Abstr.* **1973**, *78*, 96674g.

[32] Paranjpe, M. G.; Deshpande, P. H. Indian J. Chem. 1969, 7, 186.

[33] Zhang, J. J.; Schuster, G. B. J. Am. Chem. Soc. 1989, 111, 7.